Homology Modeling and Conformational Epitope Prediction of Envelope Protein of Alkhumra Haemorrhagic Fever Virus

نویسندگان

  • Naghmeh Poorinmohammad
  • Hassan Mohabatkar
چکیده

BACKGROUND The aim of this study was to generate in silico 3D-structure of the envelope protein of AHFV using homology modeling method to further predict its conformational epitopes and help other studies to investigate its structural features using the model. METHODS A 3D-structure prediction was developed for the envelope protein of Alkhumra haemorrhagic fever virus (AHFV), an emerging tick-borne flavivirus, based on a homology modeling method using M4T and Modweb servers, as the 3D-structure of the protein is not available yet. Modeled proteins were validated using Modfold 4 server and their accuracies were calculated based on their RSMDs. Having the 3D predicted model with high quality, conformational epitopes were predicted using DiscoTope 2.0. RESULTS Model generated by M4T was more acceptable than the Modweb-generated model. The global score and P-value calculated by Modfold 4 ensured that a certifiable model was generated by M4T, since its global score was almost near 1 which is the score for a high resolution X-ray crystallography structure. Furthermore, itsthe P-value was much lower than 0.001 which means that the model is completely acceptable. Having 0.46 Å rmsd, this model was shown to be highly accurate. Results from DiscoTope 2.0 showed 26 residues as epitopes, forming conformational epitopes of the modeled protein. CONCLUSION The predicted model and epitopes for envelope protein of AHFV can be used in several therapeutic and diagnostic approaches including peptide vaccine development, structure based drug design or diagnostic kit development in order to facilitate the time consuming experimental epitope mapping process.

منابع مشابه

In silico Homology Modeling and Epitope Prediction of NadA as a Potential Vaccine Candidate in Neisseria meningitidis

Neisseria meningitidis is a facultative pathogen bacterium which is well founded with a number of adhesion molecules to facilitate its colonization in human nasopharynx track. Neisseria meningitidis is a major cause of mortality from sever meningococcal disease and septicemia. The Neisseria meningitidis adhesion, NadA, is a trimeric autotransporter adhesion molecule which is involved in cell ad...

متن کامل

Prediction of three-dimensional structure and mapping of conformational epitopes of envelope glycoprotein of Japanese encephalitis virus.

Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is an important human pathogen. The envelope glycoprotein (Egp), a major structural antigen, is responsible for viral haemagglutination and eliciting neutralising antibodies. The three-dimensional structure of the Egp of JEV was predicted using the knowledge-based homology modeling approach and X-ray structure data of the Egp of ti...

متن کامل

Structure-based pKa prediction provides a thermodynamic basis for the role of histidines in pH-induced conformational transitions in dengue virus

pH-induced conformational changes in dengue virus (DENV) are critical to its ability to infect host cells. The envelope protein heterodimers that make up the viral envelope shift from a dimer to a trimer conformation at low-pH during membrane fusion. Previous studies have suggested that the ionization of histidine residues at low-pH is central to this pH-induced conformational change. We sought...

متن کامل

Expression of G1- epitope of bovine ephemeral fever virus in E. coli : A novel candidate to develop ELISA kit

Bovine ephemeral fever is an acute and arthropod-borne viral disease of cattle and water buffalo which occurs seasonally in most of the world tropical and subtropical regions. The epizootic feature of the disease has been reported in Iran with serious economic consequences. The surface glycoprotein G of bovine ephemeral fever virus (BEFV) is composed of 4 antigenic sites (G1-G4) and plays the m...

متن کامل

Epitopes Identification for Vaccine Design and Structural Aspects of Dengue Virus 3 Envelope Protein

Dengue is one of the most imperative emerging vector-borne viral diseases. A foremost hitch in designing vaccine for the dengue virus has been the high antigenic variability in the envelope protein of different virus strains. To foster operational vaccines it is essential to target multiple antigenic components of the virus, thus focusing the immune system to protect the host from the virus. Co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2015